untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:15Z</responseDate> <request identifier=oai:HAL:hal-00411868v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00411868v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:spi</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:UNIV-AMU</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:CINAM</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Mass and momentum interface equilibrium by molecular modeling. Simulating AFM adhesion between (120) gypsum faces in a saturated solution and consequences on gypsum cohesion</title> <creator>Jouanna, P.</creator> <creator>Pedesseau, L.</creator> <creator>Pepe, G.</creator> <creator>Mainprice, Dave</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Groupe de chimie organique et matériaux moléculaires (GCOMM) ; Université de la Méditerranée - Aix-Marseille 2 - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0008-8846</source> <source>Cement and Concrete Research</source> <publisher>Elsevier</publisher> <identifier>hal-00411868</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00411868</identifier> <source>https://hal.archives-ouvertes.fr/hal-00411868</source> <source>Cement and Concrete Research, Elsevier, 2008, 38 (3), pp.290-299. 〈10.1016/j.cemconres.2007.09.022〉</source> <identifier>DOI : 10.1016/j.cemconres.2007.09.022</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cemconres.2007.09.022</relation> <language>en</language> <subject lang=en>microstructure</subject> <subject lang=en>bond strength</subject> <subject lang=en>micromechanics</subject> <subject lang=en>sulfate</subject> <subject lang=en>modeling</subject> <subject>[SPI.MAT] Engineering Sciences [physics]/Materials</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Properties of composite materials depend on interatomic phenomena occurring between binder crystals. Experimental information of Atomic Force Microscopy (A.F.M.) is of prime importance; however understanding is helped by molecular modeling. As underlined in Section 1, the present study is able to simulate crystal interfaces in presence of a solution within apertures less than 1 Nanometer at a full atomic scale. Section 2 presents the case study of a gypsum solution between (120) gypsum faces, with related boundary conditions and atomic interactions. Section 3 deals with the mass equilibrium of the solution within interfaces <5 angstrom, using the original Semi Analytical Stochastic Perturbations (SASP) approach. This information becomes in Section 4 the key for explaining the peak of adhesion obtained in A.F.M. around an aperture of 3 A and gives enlightenments on gypsum cohesion. In conclusion, this illustration shows the potentialities of full atomic modeling which could not be attained by any numerical approach at a mesoscopic scale.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>