untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:40:27Z</responseDate> <request identifier=oai:HAL:hal-00424984v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00424984v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:phys</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:LCVN</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses</title> <creator>Wondraczek, L.</creator> <creator>Ciccotti, M.</creator> <creator>Dittmar, A.</creator> <creator>Oelgardt, C.</creator> <creator>Celarie, F.</creator> <creator>Marliere, C.</creator> <contributor>Institute of Non-Metallic Materials ; Clausthal University of Technology (TU Clausthal)</contributor> <contributor>Laboratoire des colloïdes, verres et nanomatériaux (LCVN) ; Université Montpellier 2 - Sciences et Techniques (UM2) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>This work was financially supported by the German Academic Exchange Service, Germany, and Egide, France, (DAAD-PROCOPE) under contract no. D/0333567 is gratefully acknowledged.</contributor> <description>13 pages, 4 figures, to be published on J. Am. Cer. Soc</description> <description>International audience</description> <source>ISSN: 0002-7820</source> <source>EISSN: 1551-2916</source> <source>Journal of the American Ceramic Society</source> <publisher>Wiley</publisher> <identifier>hal-00424984</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00424984</identifier> <source>https://hal.archives-ouvertes.fr/hal-00424984</source> <source>Journal of the American Ceramic Society, Wiley, 2006, 89 (2), pp.746-749. 〈10.1111/j.1551-2916.2005.00765.x〉</source> <identifier>ARXIV : cond-mat/0509209</identifier> <relation>info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0509209</relation> <identifier>DOI : 10.1111/j.1551-2916.2005.00765.x</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1551-2916.2005.00765.x</relation> <language>en</language> <subject lang=it>crack growth</subject> <subject lang=it>silica</subject> <subject lang=it>corrosion/corrosion resistance</subject> <subject lang=it>stress</subject> <subject>[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Since crack propagation in oxide materials at low crack velocities is partly determined by chemical corrosion, proper knowledge of the crack tip chemistry is crucial for understanding fracture in these materials. Such knowledge can be obtained only from in situ studies because the processes that occur in the highly confined environment of the crack tip are very different from those that take place at free surfaces, or that can be traced post mortem. We report the occurrence of hydrous liquid condensate between the two fracture surfaces in the vicinity of the tip of tensile cracks in silica. Observations are performed in real-time by means of atomic force microscopy (AFM) at continuously controlled crack velocities in the regime of stress corrosion. Condensate formation and changes in extent and shape are demonstrated for a wide range of macroscopic humidity at different crack speeds. Its liquid character is confirmed by the study of AFM phase-contrast data. It is believed that this evidence of a nanoscale liquid hydrous phase at the crack tip will enable novel insights in the chemistry of failure of oxide materials.</description> <date>2006-01-18</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>