untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:18:00Z</responseDate> <request identifier=oai:HAL:hal-01666379v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01666379v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> <setSpec>collection:INSU</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model</title> <creator>CANIVEN, Yannick</creator> <creator>DOMINGUEZ, Stephane</creator> <creator>SOLIVA, Roger</creator> <creator>PEYRET, Michel</creator> <creator>CATTIN, Rodolphe</creator> <creator>Maerten, Frantz</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Schlumberger ; Schlumberger</contributor> <description>International audience</description> <source>ISSN: 0012-821X</source> <source>Earth and Planetary Science Letters</source> <publisher>Elsevier</publisher> <identifier>hal-01666379</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01666379</identifier> <source>https://hal.archives-ouvertes.fr/hal-01666379</source> <source>Earth and Planetary Science Letters, Elsevier, 2017, 480, pp.147-157. 〈10.1016/j.epsl.2017.10.009〉</source> <identifier>DOI : 10.1016/j.epsl.2017.10.009</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2017.10.009</relation> <language>en</language> <subject lang=en>seismic cycle</subject> <subject lang=en>analog modeling</subject> <subject lang=en>earthquakes</subject> <subject lang=en>strike-slip fault</subject> <subject lang=en>tectonics</subject> <subject lang=en>stress</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We use a strike-slip fault analog model to study experimentally the role played by along-fault non-uniform and asymmetric applied normal stress on both coseismic slip and long-term fault behavior. Our model is based on a visco-elasto-plastic multi-layered rheology that allows to produce several hundreds of scaled analog microquakes and associated seismic cycles. Uniform or heterogeneous applied normal stress along the fault plane is imposed and maintained constant during the whole experiment durations. Our results suggest that coseismic slip patterns are strongly controlled by spatial normal stress variations and subsequent accumulated shear stress along fault strike. Major microquakes occur preferentially in zones of major shear stress asperities. Coseismic slip distributions exhibit a pattern similar to the along-fault applied normal stress distribution. The occurrence of isolated low to moderate microquakes where residual stresses persist around secondary stress asperities, indicates that stress conditions along the fault also control the whole variability of fault slip events. Moreover, when fault slip stability conditions are modulated by normal stress distribution, our experiments suggest that the along-fault stress heterogeneity influences the seismic cycle regularity and, consequently, long-term fault slip behavior. Uniform applied normal stress favors irregular seismic cycles and the occurrence of earthquakes clustering, whereas non-uniform normal stress with a single high amplitude stress asperity generates strong characteristic microquake events with stable return periods. Together our results strengthen the assumption that coseismic slip distribution and earthquake variability along an active fault may provide relevant information on long term tectonic stress and could thus improve seismic hazard assessment.</description> <date>2017-12-05</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>