untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:28:32Z</responseDate> <request identifier=oai:HAL:hal-01053709v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01053709v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:INPL</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:UNIV-LORRAINE</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Rheological transition during large strain deformation of melting and crystallizing metapelites</title> <creator>Misra, Santanu</creator> <creator>Burg, Jean-Pierre</creator> <creator>Vigneresse, Jean-Louis</creator> <creator>MAINPRICE, David</creator> <contributor>Eidgenössische Technische Hochschule [Zürich] (ETH Zürich)</contributor> <contributor>Géologie et gestion des ressources minérales et énergétiques (G2R) ; Université Henri Poincaré - Nancy 1 (UHP) - Institut National Polytechnique de Lorraine (INPL) - Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Manteau et Interfaces ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0148-0227</source> <source>EISSN: 2156-2202</source> <source>Journal of Geophysical Research</source> <publisher>American Geophysical Union</publisher> <identifier>hal-01053709</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01053709</identifier> <source>https://hal.archives-ouvertes.fr/hal-01053709</source> <source>Journal of Geophysical Research, American Geophysical Union, 2014, 119 (5), pp.3971-3985. 〈10.1002/2013JB010777〉</source> <identifier>DOI : 10.1002/2013JB010777</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1002/2013JB010777</relation> <language>en</language> <subject lang=en>Fracture and flow</subject> <subject lang=en>Permeability and porosity</subject> <subject lang=en>Reactions and phase equilibria</subject> <subject lang=en>Rheology</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Torsion experiments (inline image =3 × 10−4 s−1) were performed to investigate the large strain (γmax = 15) rheology on quartz-muscovite aggregate as analogue to pelitic rocks undergoing melting and crystallization during deformation at 300 MPa confining pressure and 750°C temperature. Microstructures reveal four distinct but gradational stages of crystal-melt interactions during deformation--(a) solid state deformation, (b) initiation and domination of partial melting, (c) simultaneous partial melting and crystallization, and (d) domination of crystallization. The microstructural stages are linked to the rheology of the deforming samples. Partial melting starts at relatively low finite shear strains (γ = 1-3) showing approximately 60% strain softening. At γ = 4-10 the partially molten bulk material shows a steady state flow at low stress. Further crystallization of new crystals at the expense of melt between γ = 10 and 15 causes weak strain hardening until the material fails by developing brittle fractures. The stress exponent (n), calculated at γ = 1, 5, and 10, increases from ∼ 3 to ∼ 43, indicating a transition from power to power law breakdown or exponential flow of the bulk system. Hydrostatic experiments for equivalent times and conditions of the torsion experiments were also conducted to evaluate the reaction kinetics and microstructures under static conditions. The new experimental data establish that partially molten rock does not flow according to a constant strain rate-dependent power law (steady state) rheology. The rheological transition from strain rate sensitive to strain rate insensitive flow is interpreted as a function of melt-crystal ratio, their mutual interactions, and the evolution of microstructures in the partially molten rock.</description> <date>2014-05</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>