untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:07Z</responseDate> <request identifier=oai:HAL:hal-00412020v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00412020v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:spi</setSpec> <setSpec>subject:phys</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:LMGC</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:MIPS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Shear strength and force transmission in granular media with rolling resistance</title> <creator>Estrada, N.</creator> <creator>Taboada, Alfredo</creator> <creator>Radjai, Farhang</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Physique et Mécanique des Milieux Granulaires (PMMG) ; Laboratoire de Mécanique et Génie Civil (LMGC) ; Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 1539-3755</source> <source>EISSN: 1550-2376</source> <source>Physical Review E : Statistical, Nonlinear, and Soft Matter Physics</source> <publisher>American Physical Society</publisher> <identifier>hal-00412020</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00412020</identifier> <source>https://hal.archives-ouvertes.fr/hal-00412020</source> <source>Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2008, 78 (2), pp.021301. 〈10.1103/PhysRevE.78.021301〉</source> <identifier>DOI : 10.1103/PhysRevE.78.021301</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.78.021301</relation> <language>en</language> <subject lang=en>Dynamics</subject> <subject lang=en>contact</subject> <subject lang=en>simulation</subject> <subject lang=en>failure</subject> <subject lang=en>particles</subject> <subject lang=en>friction systems</subject> <subject>[SPI.MAT] Engineering Sciences [physics]/Materials</subject> <subject>[SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]</subject> <subject>[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We investigate a class of granular materials characterized by the possibility of interlocking between the particles. The interlocking is modeled by its effect through rolling resistance depending on relative rotation and normal force at the contact points and involving a single parameter analogous to the sliding friction coefficient. The model, which is introduced in the framework of the contact dynamics, method, is applied to simulate the simple shear of a large granular sample. We present a detailed analysis regarding the influence of rolling and sliding friction parameters on the macroscopic response in terms of shear strength, fabric properties, and force transmission. Interestingly, two distinct regimes can be distinguished in which the steady-state shear strength is controlled by either rolling resistance or sliding friction. The relative contributions of rolling and sliding contacts to the shear strength are consistent with the same two regimes. Interlocking strongly affects the force network by enhancing the arching effect and thus increasing the relative importance of weak contact forces and torques, which is reflected in a decreasing power-law probability distribution of the contact forces and torques below the mean. Due to the combined effect of friction and interlocking, the force-carrying backbone takes an increasingly columnar aspect involving a low fraction of particles. Our data suggest that the nature of the weak contact network is strongly affected by the formation of these columns of particles which do not need to be propped laterally. In particular, in the limit of high rolling resistance and sliding friction, the role of the weak network of contacts is no longer to prop the force chains, but, like the strong contact network, to actively sustain the deviatoric load imposed on the system.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>