untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:41:31Z</responseDate> <request identifier=oai:HAL:hal-00645165v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00645165v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdv</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:INSERM</setSpec> <setSpec>collection:UNIV-PARIS7</setSpec> <setSpec>collection:UNIV-REUNION</setSpec> <setSpec>collection:INC-CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:USPC</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>How cations can assist DNase I in DNA binding and hydrolysis.</title> <creator>Guéroult, Marc</creator> <creator>Picot, Daniel</creator> <creator>Abi-Ghanem, Joséphine</creator> <creator>Hartmann, Brigitte</creator> <creator>Baaden, Marc</creator> <contributor>Laboratoire de biochimie théorique [Paris] (LBT) ; Université Paris Diderot - Paris 7 (UPD7) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Protéines de la membrane érythrocytaire et homologues non-érythroides ; Université des Antilles et de la Guyane (UAG) - Institut National de la Transfusion Sanguine [Paris] (INTS) - Université Paris Diderot - Paris 7 (UPD7) - Université de la Réunion (UR) - Institut National de la Santé et de la Recherche Médicale (INSERM)</contributor> <contributor>Physico-chimie moléculaire des membranes biologiques (PCMMB) ; Université Paris Diderot - Paris 7 (UPD7) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Marc Baaden thanks the French National Research Agency for funding (Grants ANR-06-PCVI-0025 and ANR-07-CIS7-003-01; http://www.agence-nationale-recherche.fr/). Marc Guéroult is funded by the CNRS (http://www.cnrs.fr).</contributor> <description>International audience</description> <source>ISSN: 1553-734X</source> <source>EISSN: 1553-7358</source> <source>PLoS Computational Biology</source> <publisher>Public Library of Science</publisher> <identifier>hal-00645165</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00645165</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00645165/document</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00645165/file/journal.pcbi.1001000.pdf</identifier> <source>https://hal.archives-ouvertes.fr/hal-00645165</source> <source>PLoS Computational Biology, Public Library of Science, 2010, 6 (11), pp.e1001000. 〈10.1371/journal.pcbi.1001000〉</source> <identifier>DOI : 10.1371/journal.pcbi.1001000</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1001000</relation> <identifier>PUBMED : 21124947</identifier> <relation>info:eu-repo/semantics/altIdentifier/pmid/21124947</relation> <language>en</language> <subject>[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>DNase I requires Ca²+ and Mg²+ for hydrolyzing double-stranded DNA. However, the number and the location of DNase I ion-binding sites remain unclear, as well as the role of these counter-ions. Using molecular dynamics simulations, we show that bovine pancreatic (bp) DNase I contains four ion-binding pockets. Two of them strongly bind Ca²+ while the other two sites coordinate Mg²+. These theoretical results are strongly supported by revisiting crystallographic structures that contain bpDNase I. One Ca²+ stabilizes the functional DNase I structure. The presence of Mg²+ in close vicinity to the catalytic pocket of bpDNase I reinforces the idea of a cation-assisted hydrolytic mechanism. Importantly, Poisson-Boltzmann-type electrostatic potential calculations demonstrate that the divalent cations collectively control the electrostatic fit between bpDNase I and DNA. These results improve our understanding of the essential role of cations in the biological function of bpDNase I. The high degree of conservation of the amino acids involved in the identified cation-binding sites across DNase I and DNase I-like proteins from various species suggests that our findings generally apply to all DNase I-DNA interactions.</description> <date>2010</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>