untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:17:57Z</responseDate> <request identifier=oai:HAL:hal-01667146v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01667146v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:phys</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:ENSC-LILLE</setSpec> <setSpec>collection:INRA</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INC-CNRS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> <setSpec>collection:INSU</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Hardening mechanisms in olivine single crystal deformed at 1090 degrees C: an electron tomography study</title> <creator>Mussi, Alexandre</creator> <creator>Cordier, Patrick</creator> <creator>DEMOUCHY, Sylvie</creator> <creator>Hue, Benoit</creator> <contributor>Unité Matériaux et Transformations - UMR 8207 (UMET) ; Institut National de la Recherche Agronomique (INRA) - Université de Lille, Sciences et Technologies - Ecole Nationale Supérieure de Chimie de Lille (ENSCL) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 1478-6443</source> <source>Philosophical Magazine</source> <publisher>Taylor & Francis: STM, Behavioural Science and Public Health Titles</publisher> <identifier>hal-01667146</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01667146</identifier> <source>https://hal.archives-ouvertes.fr/hal-01667146</source> <source>Philosophical Magazine, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2017, 97 (33), pp.3172-3185. 〈10.1080/14786435.2017.1367858〉</source> <identifier>DOI : 10.1080/14786435.2017.1367858</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1080/14786435.2017.1367858</relation> <language>en</language> <subject lang=en>Olivine</subject> <subject lang=en>plastic deformation</subject> <subject lang=en>dislocations</subject> <subject lang=en>electron tomography</subject> <subject lang=en>cross-slip</subject> <subject lang=en>climb</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The dislocation microstructures in a single crystal of olivine deformed experimentally in uniaxial compression at 1090 °C and under a confining pressure of 300 MPa, have been investigated by transmission electron tomography in order to better understand deformation mechanisms at the microscale relevant for lithospheric mantle deformations. Investigation by electron tomography reveals microstructures, which are more complex than previously described, composed of and dislocations commonly exhibiting 3D configurations. Numerous mechanisms such as climb, cross-slip, double cross-slip as well as interactions like junction formations and collinear annihilations are the source of this complexity. The diversity observed advocates for microscale deformation of olivine significantly less simple than classic dislocation creep reported in metals or ice close to melting temperature. Deciphering mechanism of hardening in olivine at temperatures where ionic diffusion is slow and is then expected to play very little role is crucial to better understand and thus model deformation at larger scale and at temperatures (900–1100 °C) highly relevant for the lithospheric mantle.</description> <date>2017</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>