untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:09:15Z</responseDate> <request identifier=oai:HAL:hal-01528296v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01528296v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:spi</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-LITTORAL</setSpec> <setSpec>collection:IFREMER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Turbulence analysis and multiscale correlations between synchronized flow velocity and marine turbine power production</title> <creator>Durán Medina, Olmo</creator> <creator>Schmitt, François G</creator> <creator>CALIF, Rudy</creator> <creator>Germain, Grégory</creator> <creator>Gaurier, Benoît</creator> <contributor>Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG) ; Centre National de la Recherche Scientifique (CNRS) - Université du Littoral Côte d'Opale - Université de Lille, Sciences et Technologies</contributor> <contributor>Laboratoire de Recherche en Géosciences et Énergies (LaRGE) ; Université des Antilles et de la Guyane (UAG)</contributor> <contributor>IFREMER, CSM ; IREMER Boulogne sur Mer</contributor> <description>International audience</description> <source>ISSN: 0960-1481</source> <source>EISSN: 1879-0682</source> <source>Renewable Energy</source> <publisher>Elsevier</publisher> <identifier>hal-01528296</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01528296</identifier> <source>https://hal.archives-ouvertes.fr/hal-01528296</source> <source>Renewable Energy, Elsevier, 2017, 112, pp.314-327. 〈10.1016/j.renene.2017.05.024〉</source> <identifier>DOI : 10.1016/j.renene.2017.05.024</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.renene.2017.05.024</relation> <language>en</language> <subject lang=en>Marine energy</subject> <subject lang=en> Turbulence</subject> <subject lang=en> Multifractal energy cascade</subject> <subject lang=en> Intermittency</subject> <subject lang=en> Turbine power production</subject> <subject lang=en> High frequency data rate</subject> <subject>[SDU] Sciences of the Universe [physics]</subject> <subject>[SPI] Engineering Sciences [physics]</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The correlation between the flow turbulence and the performances of a ma- rine current turbine is studied. First, the incoming flow encountered in the flume tank is characterized in the framework of fully developed turbulent cascades in the inertial range. The Reynolds number, the Kolmogorov dissipation scale and the integral scale, are estimated from flow measurements. The intermittency of the turbulence is characterized in the lognormal multifractal framework, and the influence of the turbulent flow on the turbine power is assessed. The rotor speed control unit characteristics used for the turbine regulation induces non-negligible effects on the turbine behavior under fluctuations loads. Even if the power spectrum does not reveal any scale invariance, a multiscale analysis allows us to show the correlations between the turbulence time se- ries and the power produced. The classical Mean Square Coherency function shows that for scales larger than 10 seconds, the upstream velocity and power have large correlations. In the framework of the Empirical Mode Decomposition method, such correlations are studied using the time-dependence intrinsic corre- lation analysis method. This method allows to zoom into time-frequency scales where the flow perturbations induced some modifications in power production </description> <date>2017-05-06</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>