untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-17T12:06:10Z</responseDate> <request identifier=oai:HAL:insu-01565057v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:insu-01565057v1</identifier> <datestamp>2018-01-16</datestamp> <setSpec>type:COMM</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:ISTO</setSpec> <setSpec>collection:OSUC</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-ORLEANS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:BRGM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Time-evolution and strain distribution of a major shear zone (SASZ,Brittany, France)</title> <creator>Augier, Romain</creator> <creator>Raimbourg, Hugues</creator> <creator>Bellanger, Mathieu</creator> <creator>Turrillot, Paul</creator> <creator>Monié, Patrick</creator> <contributor>Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO) ; Bureau de Recherches Géologiques et Minières (BRGM) (BRGM) - Institut national des sciences de l'Univers (INSU - CNRS) - Université d'Orléans (UO) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>EGU General Assembly 2014</source> <coverage>Vienne, Austria</coverage> <identifier>insu-01565057</identifier> <identifier>https://hal-insu.archives-ouvertes.fr/insu-01565057</identifier> <source>https://hal-insu.archives-ouvertes.fr/insu-01565057</source> <source>EGU General Assembly 2014, Apr 2014, Vienne, Austria. 16 (EGU2014-7498), 1 page</source> <language>en</language> <subject>[SDU] Sciences of the Universe [physics]</subject> <type>info:eu-repo/semantics/conferenceObject</type> <type>Conference papers</type> <description lang=en>Mylonite-bearing crustal shear zones are exhumed extensions at depth of (potentially seismogenic) brittle faultsat shallow structural level. By concentrating deformation, shear zones play a major role in the rheology and mechanicalbehavior of the continental crust. Analysis of shear zone geometry and microstructures is a useful toolto decipher deformation kinematics, though finite strain estimation is still relatively qualitative. Timing of thedeformation has also been the focus of numerous studies using the complete spectrum of geochronometers. However,only rare examples provide geochronological data that can be unambiguously linked with deformation. Thus,time-scales over which major mylonite zones develop and remain active under ductile conditions as well as theirstrain rates often remain poorly documented. Several sections across the South Armorican Shear Zone (SASZ),a crustal-scale, several km-thick dextral shear zone were investigated by structural, petrological and Ar/Ar radiochronologicalmethods. Finite strain profiles on these sections showed a strong deformation partitioning towardsthe ultramylonite core of the SASZ, with a decrease, of both the C’/S mean angle (from ca. 45 to less than5) and the Quartz grain-size (from ca. 150 to 5 m). In parallel, conventional and in-situ Ar/Ar datings on thefabric-forming white micas were performed on compositionally complex white-micas. Inherited magmatic muscovitescarried by the foliation and newly-formed, syn-tectonic substituted phengites located along the shear bandsyielded 2 age groups for the less deformed samples. Along the shear zone cross-section, the difference betweenthese two ages evolves from 10-15 Ma in weakly deformed domains to zero toward the SASZ core. In addition, thevery fine-grained syn-tectonic phengites yielded the same ca. 300-298 Ma age irrespectively of their distance to thecore of the shear zone, even in slightly deformed rocks distant by several km. These results support a new modelof crustal-scale shear zone activity, where the whole body of the shear zone is active throughout its history, i.e.the actively deforming zone does not get progressively narrower. The strain distribution nevertheless evolves withtime, with an increasingly larger fraction partitioned in the ultramylonitic core. Besides, combination of the finitestrain estimations and the Ar/Ar ages enables us to assess the range of strain rates associated with mylonitization.</description> <date>2014-04-27</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>