untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:40:41Z</responseDate> <request identifier=oai:HAL:hal-00420882v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00420882v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan</title> <creator>Chang, Kuo Jeng</creator> <creator>Taboada, Alfredo</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 0148-0227</source> <source>EISSN: 2156-2202</source> <source>Journal of Geophysical Research</source> <publisher>American Geophysical Union</publisher> <identifier>hal-00420882</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00420882</identifier> <source>https://hal.archives-ouvertes.fr/hal-00420882</source> <source>Journal of Geophysical Research, American Geophysical Union, 2009, 114, pp.F03003. 〈10.1029/2008JF001075〉</source> <identifier>DOI : 10.1029/2008JF001075</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1029/2008JF001075</relation> <language>en</language> <subject lang=en>ERH-SHAN LANDSLIDE</subject> <subject lang=en>DEFORMATION</subject> <subject lang=en>DEBRIS</subject> <subject lang=en>SLOPE</subject> <subject lang=en>DISPLACEMENTS</subject> <subject lang=en>STURZSTROMS</subject> <subject lang=en>CALIFORNIA</subject> <subject lang=en>MOBILITY</subject> <subject lang=en>SHAKING</subject> <subject lang=en>FIELD</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>We present Contact Dynamics discrete element simulations of the earthquake-triggered Jiufengershan avalanche, which mobilized a 60 m thick, 1.5 km long sedimentary layer, dipping similar to 22 degrees SE toward a valley. The dynamic behavior of the avalanche is simulated under different assumptions about rock behavior, water table height, and boundary shear strength. Additionally, seismic shaking is introduced using strong motion records from nearby stations. We assume that seismic shaking generates shearing and frictional heating along the surface of rupture, which, in turn, may induce dynamic weakening and avalanche triggering; a simple "slip-weakening'' criterion was adopted to simulate shear strength drop along the rupture surface. We investigate the mechanical processes occurring during triggering and propagation of an avalanche mobilizing shallowly dipping layers. Incipient deformation forms a pop-up structure at the toe of the dip slope. As the avalanche propagates, the pop-up deforms into an overturned fold, which overrides the surface of separation along a decollement. Simultaneously, uphill layers slide at high velocity (125 km/h) and are folded and disrupted as they reach the toe of the dip slope. The avalanche foot forms a wedge that is pushed forward as deformed rocks accrete at its rear. We simulated five cross sections across the Jiufengershan avalanche, which differ in the geometry of the surface of separation. Topographic and simulated surface profiles are similar. The friction coefficient at the surface of separation determined from back analysis is abnormally low (mu(SS) = 0.2), possibly due to lubrication by liquefied soils. The granular deposits of simulated earthquake- and rain-triggered avalanches are similar.</description> <date>2009</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>