untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:40:37Z</responseDate> <request identifier=oai:HAL:hal-00420904v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00420904v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Deformation and Reactive Melt Transport in the Mantle Lithosphere above a Large-scale Partial Melting Domain: the Ronda Peridotite Massif, Southern Spain</title> <creator>Soustelle, Vincent</creator> <creator>Tommasi, Andrea</creator> <creator>Bodinier, Jean-Louis</creator> <creator>Garrido, C. J.</creator> <creator>Vauchez, Alain</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Instituto Andaluz de Ciencias de la Tierra (IACT) ; Universidad de Granada (UGR) - Consejo Superior de Investigaciones Científicas [Spain] (CSIC)</contributor> <description>International audience</description> <source>ISSN: 0022-3530</source> <source>EISSN: 1460-2415</source> <source>Journal of Petrology</source> <publisher>Oxford University Press (OUP)</publisher> <identifier>hal-00420904</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00420904</identifier> <source>https://hal.archives-ouvertes.fr/hal-00420904</source> <source>Journal of Petrology, Oxford University Press (OUP), 2009, 50 (7), pp.1235-1266. 〈10.1093/petrology/egp032〉</source> <identifier>DOI : 10.1093/petrology/egp032</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1093/petrology/egp032</relation> <language>en</language> <subject lang=en>asthenosphere-lithosphere boundary</subject> <subject lang=en>deformation</subject> <subject lang=en>lithosphere</subject> <subject lang=en>melt percolation</subject> <subject lang=en>microstructure</subject> <subject lang=en>olivine</subject> <subject lang=en>CPO</subject> <subject lang=en>mylonites</subject> <subject lang=en>partial melting</subject> <subject lang=en>peridotite</subject> <subject lang=en>refertilization</subject> <subject lang=en>transient heating</subject> <subject>[SDU.STU.PE] Sciences of the Universe [physics]/Earth Sciences/Petrography</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>The Ronda peridotite massif in Southern Spain shows a well-defined 'recrystallization' front that separates a large-scale partial melting domain formed at the expense of the continental lithospheric mantle from a 'preserved' lithospheric domain. To investigate the processes allowing a transient lithosphere-asthenosphere boundary to propagate in the lithospheric mantle, we performed a joint petrostructural and geochemical study of an similar to 2.5 km(2) zone extending from the melting front to the mylonites that mark the western limit of the massif. This study emphasizes a feedback between heat transfer, melt percolation, and deformation in the lithospheric mantle. Petrographical observations and geochemical data show that heterogeneous reactive percolation of melts produced in the underlying partial melting domain led to refertilization of lithospheric peridotites up to 1.5 km ahead from the melting front, producing metre-scale layering of fertile and refractory mantle rocks. Within 800 m from the front, pre-existing garnet pyroxenite layers were partially molten and the resulting melts probably contributed to the refertilization process. Detailed structural mapping and analysis of the microstructures and crystal preferred orientations highlight the relations between reactive melt transport and deformation, and the control of the temperature gradient on both processes. Parallelism between the recrystallization front, compositional boundaries, and deformation structures, as well as variations in the deformation intensity of pyroxenes and spinels, suggest syn- to late-tectonic melt transport controlled by both the deformation and the thermal gradient. Variations in the strength of olivine crystal preferred orientations as a function of the modal and chemical composition of the spinel tectonites point to a higher contribution of diffusion to deformation in the most fertile rocks, corroborating the hypothesis that deformation occurred in presence of melt. Finally, the systematic dispersion of olivine [100] and orthopyroxene [001] axes in the foliation plane suggests a dominantly transpressive deformation regime.</description> <date>2009</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>