untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:30:03Z</responseDate> <request identifier=oai:HAL:hal-01032086v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01032086v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdv</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:AGROPARISTECH</setSpec> <setSpec>collection:ECOFOG</setSpec> <setSpec>collection:INRA</setSpec> <setSpec>collection:ENGREF</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Differential seedling growth response to soil resource availability among nine neotropical tree species</title> <creator>Baraloto, Christopher</creator> <creator>Bonal, Damien</creator> <creator>Goldberg, Deborah E.</creator> <contributor>Ecologie des forêts de Guyane (ECOFOG) ; Ecole Nationale du Génie Rural, des Eaux et des Forêts (ENGREF) - Institut National de la Recherche Agronomique (INRA) - Université des Antilles et de la Guyane (UAG) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description> </description> <source>ISSN: 0266-4674</source> <source>EISSN: 1469-7831</source> <source>Journal of Tropical Ecology</source> <publisher>Cambridge University Press (CUP)</publisher> <identifier>hal-01032086</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-01032086</identifier> <source>https://hal.archives-ouvertes.fr/hal-01032086</source> <source>Journal of Tropical Ecology, Cambridge University Press (CUP), 2006, 22 (5), pp.487-497. 〈10.1017/S0266467406003439〉</source> <identifier>DOI : 10.1017/S0266467406003439</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1017/S0266467406003439</relation> <language>en</language> <subject lang=en>DICORYNIA</subject> <subject lang=en>EPERUA</subject> <subject lang=en>GOUPIA</subject> <subject lang=en>JACARANDA</subject> <subject lang=en>QUALEA</subject> <subject lang=en>RECORDOXYLON</subject> <subject lang=en>SEXTONIA</subject> <subject lang=en>VIROLA</subject> <subject lang=en>BIOMASS ALLOCATION</subject> <subject lang=en>DROUGHT STRESS</subject> <subject lang=en>FRENCH GUIANA</subject> <subject lang=en>PLASTICITY</subject> <subject lang=en>RELATIVE GROWTH RATE</subject> <subject lang=en>SOIL PHOSPHORUS</subject> <subject lang=en>SPECIFIC LEAF AREA</subject> <subject lang=en>RELATION PLANTE-SOL</subject> <subject>[SDV.SA] Life Sciences [q-bio]/Agricultural sciences</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Although the potential contribution to tropical tree species coexistence of niche differentiation along light gradients has receivedmuch attention, the degree to which species perform differentially along soil resource gradients remains unclear. To examine differential growth response to soil resources, we grew seedlings of nine tropical tree species at 6.0% of full sun for 12mo in a factorial design of two soil types (clay and white sand), two phosphate fertilization treatments (control and addition of 100mgP kg−1) and two watering treatments (field capacity and water limitation to one-third field capacity). Species differedmarkedly in biomass growth rate, but this hierarchy was almost completely conserved across all eight treatments. All species grew more slowly in sand than clay soils, and no species grew faster with phosphate additions. Only Eperua grandiflora and E. falcata showed significant growth increases in the absence of water limitation. Faster-growing species were characterized by high specific leaf area, high leaf allocation and high net assimilation rate but not lower root allocation. Slower-growing species exhibited greater plasticity in net assimilation rate, suggesting that tolerance of edaphic stress in these species is related more to stomatal control than to whole-plant carbon allocation. Although relative growth rate for biomass was correlatedwith both its physiological and morphological components, interspecific differences were best explained by differences in net assimilation rate across six of the eight treatments. A suite of traits including high assimilation and high specific leaf area maintains rapid growth rate of faster-growing species across awide gradient of soil resources, but the lack of plasticity they exhibit may compromise their survival in the poorest soil environments.</description> <date>2006</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>