untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T15:41:05Z</responseDate> <request identifier=oai:HAL:hal-00412153v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00412153v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:spi</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:LCVN</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Dynamic condensation of water at crack tips in fused silica glass</title> <creator>Ciccotti, M.</creator> <creator>George, M.</creator> <creator>Ranieri, V.</creator> <creator>Wondraczek, L.</creator> <creator>Marliere, Christian</creator> <contributor>Laboratoire des colloïdes, verres et nanomatériaux (LCVN) ; Université Montpellier 2 - Sciences et Techniques (UM2) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <source>ISSN: 0022-3093</source> <source>Journal of Non-Crystalline Solids</source> <publisher>Elsevier</publisher> <identifier>hal-00412153</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00412153</identifier> <source>https://hal.archives-ouvertes.fr/hal-00412153</source> <source>Journal of Non-Crystalline Solids, Elsevier, 2008, 354 (2-9), pp.564-568. 〈10.1016/j.jnoncrysol.2007.06.090〉</source> <identifier>DOI : 10.1016/j.jnoncrysol.2007.06.090</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jnoncrysol.2007.06.090</relation> <language>en</language> <subject lang=en>corrosion</subject> <subject lang=en>crack growth</subject> <subject lang=en>fracture</subject> <subject lang=en>microscopy</subject> <subject lang=en>silica</subject> <subject lang=en>water in glass</subject> <subject lang=en>Atomic-force microscopy</subject> <subject lang=en>t apping mode</subject> <subject lang=en>vapor</subject> <subject>[SPI.MAT] Engineering Sciences [physics]/Materials</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Water molecules play a fundamental role in the physics of slow crack propagation in glasses. It is commonly understood that, during stress-corrosion, water molecules that move in the crack cavity effectively reduce the bond strength at the strained crack tip and, thus, support crack propagation. Yet the details of the environmental condition at the crack tip in moist air are not well determined. In a previous work, we reported direct evidence of the presence of a 100 nm long liquid condensate at the crack tip in fused silica glass during very slow crack propagation (10(-9)-10(-10) m/s). These observations are based on in situ AFM phase imaging techniques applied on DCDC glass specimens in controlled atmosphere. Here, we discuss the physical origin of the AFM phase contrast between the liquid condensate and the glass surface in relation to tip-sample adhesion induced by capillary bridges. We then report new experimental data on the water condensation length increase with relative humidity in the atmosphere. The measured condensation lengths were much larger than what predicted using the Kelvin equation and expected geometry of the crack tip.</description> <date>2008</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>