untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:32:31Z</responseDate> <request identifier=oai:HAL:hal-00903464v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00903464v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-PARIS7</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UPMC</setSpec> <setSpec>collection:IMPMC</setSpec> <setSpec>collection:ALLINSP</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:ENS-PARIS</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:PSL</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:IPGP</setSpec> <setSpec>collection:USPC</setSpec> <setSpec>collection:UPMC_POLE_2</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Graphite formation by carbonate reduction during subduction</title> <creator>Galvez, Matthieu E.</creator> <creator>Beyssac, Olivier</creator> <creator>Martinez, Isabelle</creator> <creator>Benzerara, Karim</creator> <creator>Chaduteau, Carine</creator> <creator>Malvoisin, Benjamin</creator> <creator>Malavieille, Jacques</creator> <contributor>Institut de minéralogie et de physique des milieux condensés (IMPMC) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - IPG PARIS - Université Paris Diderot - Paris 7 (UPD7) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Institut de Physique du Globe de Paris (IPGP) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - Institut national des sciences de l'Univers (INSU - CNRS) - IPG PARIS - Université Paris Diderot - Paris 7 (UPD7) - Université de la Réunion (UR) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>École normale supérieure - Paris (ENS Paris)</contributor> <contributor>Dynamique de la Lithosphere ; Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS) - Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>ISSN: 1752-0894</source> <source>Nature Geoscience</source> <publisher>Nature Publishing Group</publisher> <identifier>hal-00903464</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00903464</identifier> <source>https://hal.archives-ouvertes.fr/hal-00903464</source> <source>Nature Geoscience, Nature Publishing Group, 2013, 6 (6), pp.473-477. 〈10.1038/NGEO1827〉</source> <identifier>DOI : 10.1038/NGEO1827</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1038/NGEO1827</relation> <language>en</language> <subject>[SDU.STU.PE] Sciences of the Universe [physics]/Earth Sciences/Petrography</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>Carbon is transported from Earth's surface into its interior at subduction zones. Carbonates in sediments overlying hydrothermally altered rocks (including serpentinites) within the subducted slab are the main carriers of this carbon1. Part of the carbon is recycled back to the surface by volcanism, but some is transferred to the deep Earth1, 2. Redox transformations during shallow subduction control the transfer and long-term fate of carbon, but are poorly explored1, 3. Here we use carbon stable isotopes and Raman spectroscopy to analyse the reduction of carbonate in an exhumed serpentinite-sediment contact in Alpine Corsica, France. We find that highly crystalline graphite was formed during subduction metamorphism and was concentrated in the sediment, within a reaction zone in direct contact with the serpentinite. The graphite in this reaction zone has a carbon isotopic signature (δ13C) of up to 0.8±0.1‰, similar to that of the original calcite that composed the sediments, and is texturally associated with the calcium-bearing mineral wollastonite that is also formed in the process. We use mass-balance calculations to show that about 9% of the total carbonaceous matter in the sedimentary unit results from complete calcite reduction in the reaction zone. We conclude that graphite formation, under reducing and low-temperature conditions, provides a mechanism to retain carbon in a subducting slab, aiding transport of carbon into the deeper Earth.</description> <date>2013-06</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>