untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:37:38Z</responseDate> <request identifier=oai:HAL:hal-00767563v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-00767563v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdu</setSpec> <setSpec>subject:phys</setSpec> <setSpec>subject:sde</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:SDE</setSpec> <setSpec>collection:EPHE</setSpec> <setSpec>collection:GM</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:UPMC</setSpec> <setSpec>collection:METIS_UMR7619</setSpec> <setSpec>collection:ENSMP</setSpec> <setSpec>collection:INSTITUT-TELECOM</setSpec> <setSpec>collection:PARISTECH</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:INSU</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:PSL</setSpec> <setSpec>collection:UPMC_POLE_3</setSpec> <setSpec>collection:B3ESTE</setSpec> <setSpec>collection:UNIV-MONTPELLIER</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>In vivo CT X-ray observations of porosity evolution during triaxial deformation of a calcarenite</title> <creator>Raynaud, Suzanne</creator> <creator>Vasseur, Guy</creator> <creator>Soliva, Roger</creator> <contributor>Géosciences Montpellier ; Université des Antilles et de la Guyane (UAG) - Institut national des sciences de l'Univers (INSU - CNRS) - Université de Montpellier (UM) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Structure et fonctionnement des systèmes hydriques continentaux (SISYPHE) ; Université Pierre et Marie Curie - Paris 6 (UPMC) - École pratique des hautes études (EPHE) - MINES ParisTech - École nationale supérieure des mines de Paris - Centre National de la Recherche Scientifique (CNRS)</contributor> <description>International audience</description> <source>International Journal of Rock Mechanics and Mining Science</source> <identifier>hal-00767563</identifier> <identifier>https://hal.archives-ouvertes.fr/hal-00767563</identifier> <source>https://hal.archives-ouvertes.fr/hal-00767563</source> <source>International Journal of Rock Mechanics and Mining Science, 2012, 56, pp.161-170. 〈10.1016/j.ijrmms.2012.07.020〉</source> <identifier>DOI : 10.1016/j.ijrmms.2012.07.020</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijrmms.2012.07.020</relation> <language>en</language> <subject lang=en>Porous calcarenite</subject> <subject lang=en>X-ray tomography</subject> <subject lang=en>Triaxial test Non-destructive mapping</subject> <subject lang=en>Dilation</subject> <subject lang=en>Brittle rupture</subject> <subject>[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]</subject> <subject>[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]</subject> <subject>[SDE.MCG] Environmental Sciences/Global Changes</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>In most rock mechanical testing devices, the texture developed during deformation is only observed after the failure, and the detailed mapping of cracks and pore structure evolution, just before or after rupture, remains speculative. Computerized X-ray tomography (CT X-ray) offers a way to observe 'in vivo' some characteristics of a tested sample in the course of its deformation. Therefore we developed an X-ray transparent tri-axial cell that was included in a medical purpose X-ray scanner with a volumetric resolution of the order of 1 mm3. This technique is described and applied to a porous calcarenite, which is regularly scanned for porosity evolution during mechanical testing. The experiment is performed at low confining pressure (2-10 MPa). During testing, an axial load is applied until failure and is then progressively decreased. In these experiments, the peak stress is preceded by phase of diffuse dilatancy. After failure localization, the axial stress is unloaded until the stress reaches isotropy. During this unloading phase, the previous diffuse dilatancy is lost due to an elastic relaxation. Then, the stress is completely relaxed. At this moment the dilatancy increases again and the residual dilatancy is larger than that reached at the peak stress. When observed "post mortem" at microscopic scale, the dilatant structures are comprised of cataclastic deformation bands and cracks in some larger crystals.</description> <date>2012-12</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>