untitled
<OAI-PMH schemaLocation=http://www.openarchives.org/OAI/2.0/ http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd> <responseDate>2018-01-15T18:24:36Z</responseDate> <request identifier=oai:HAL:hal-01282834v1 verb=GetRecord metadataPrefix=oai_dc>http://api.archives-ouvertes.fr/oai/hal/</request> <GetRecord> <record> <header> <identifier>oai:HAL:hal-01282834v1</identifier> <datestamp>2018-01-11</datestamp> <setSpec>type:ART</setSpec> <setSpec>subject:sdv</setSpec> <setSpec>collection:UNIV-PERP</setSpec> <setSpec>collection:CNRS</setSpec> <setSpec>collection:UNIV-AG</setSpec> <setSpec>collection:UNIV-NC</setSpec> <setSpec>collection:EHESS</setSpec> <setSpec>collection:IFREMER</setSpec> <setSpec>collection:EPHE</setSpec> <setSpec>collection:GIP-BE</setSpec> <setSpec>collection:IRD</setSpec> <setSpec>collection:AGROPOLIS</setSpec> <setSpec>collection:CRIOBE</setSpec> <setSpec>collection:PSL</setSpec> <setSpec>collection:UNIV-POLYNESIE</setSpec> <setSpec>collection:UPF</setSpec> </header> <metadata><dc> <publisher>HAL CCSD</publisher> <title lang=en>Improving marine disease surveillance through sea temperature monitoring, outlooks and projections</title> <creator>Maynard, Jeffrey</creator> <creator>van Hooidonk, Ruben</creator> <creator>Drew Harvell, C</creator> <creator>Eakin, C. Mark</creator> <creator>Liu, Gang</creator> <creator>Willis, Bette L.</creator> <creator>Williams, Gareth J.</creator> <creator>Groner, Maya L.</creator> <creator>Dobson, Andrew</creator> <creator>Heron, Scott F.</creator> <creator>Glenn, Robert</creator> <creator>Reardon, Kathleen</creator> <creator>Shields, Jeffrey D.</creator> <contributor>Department of Ecology & Evolutionary Biology ; Cornell University</contributor> <contributor>Laboratoire d'Excellence CORAIL (LabEX CORAIL) ; Institut de Recherche pour le Développement (IRD) - Université des Antilles et de la Guyane (UAG) - École des hautes études en sciences sociales (EHESS) - École pratique des hautes études (EPHE) - Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) - Université de la Réunion (UR) - Université de la Polynésie Française (UPF) - Université de Nouvelle Calédonie - Institut d'écologie et environnement</contributor> <contributor>Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD) - École pratique des hautes études (EPHE) - Centre National de la Recherche Scientifique (CNRS)</contributor> <contributor>Cooperative Institute for Marine and Atmospheric Studies ; University of Miami [Coral Gables]</contributor> <contributor>NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) ; National Oceanic and Atmospheric Administration (NOAA)</contributor> <contributor> NOAA Center for Satellite Applications and Research (STAR) ; NOAA National Environmental Satellite, Data, and Information Service (NESDIS) ; National Oceanic and Atmospheric Administration (NOAA) - National Oceanic and Atmospheric Administration (NOAA)</contributor> <contributor>College of Marine and Environmental Sciences ; James Cook University (JCU)</contributor> <contributor>ARC Centre of Excellence for Coral Reef Studies (CoralCoE) ; James Cook University (JCU)</contributor> <contributor>School of Ocean Sciences ; Bangor University</contributor> <contributor>Centre for Veterinary Epidemiological Research ; University of Prince Edward Island</contributor> <contributor>Department of Ecology and Evolutionary Biology [Princeton] ; Princeton University </contributor> <contributor>Coral Reef Watch ; NOAA Center for Satellite Applications and Research (STAR) ; NOAA National Environmental Satellite, Data, and Information Service (NESDIS) ; National Oceanic and Atmospheric Administration (NOAA) - National Oceanic and Atmospheric Administration (NOAA) - NOAA National Environmental Satellite, Data, and Information Service (NESDIS) ; National Oceanic and Atmospheric Administration (NOAA) - National Oceanic and Atmospheric Administration (NOAA)</contributor> <contributor>Marine Geophysical Laboratory ; James Cook University (JCU)</contributor> <contributor>Dept. of Marine Fisheries and Resources, Marine Biology Division ; Hadhramout University of Science and Technology</contributor> <contributor>Department of Marine Resources (DMR) ; State of Maine</contributor> <contributor>The Virginia Institute of Marine Science ; The College of William & Mary</contributor> <description>International audience</description> <source>ISSN: 0080-4622</source> <source>Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990)</source> <publisher>Royal Society, The</publisher> <identifier>hal-01282834</identifier> <identifier>https://hal-univ-perp.archives-ouvertes.fr/hal-01282834</identifier> <identifier>https://hal-univ-perp.archives-ouvertes.fr/hal-01282834/document</identifier> <identifier>https://hal-univ-perp.archives-ouvertes.fr/hal-01282834/file/20150208.full.pdf</identifier> <source>https://hal-univ-perp.archives-ouvertes.fr/hal-01282834</source> <source>Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934–1990), Royal Society, The, 2016, 371 (1689), 〈10.1098/rstb.2015.0208〉</source> <identifier>DOI : 10.1098/rstb.2015.0208</identifier> <relation>info:eu-repo/semantics/altIdentifier/doi/10.1098/rstb.2015.0208</relation> <language>en</language> <subject lang=en>climate change</subject> <subject lang=en>Homarus americanus</subject> <subject lang=en>epizootic shell disease</subject> <subject lang=en>marine disease</subject> <subject lang=en>predictive tools</subject> <subject lang=en>resource management</subject> <subject>[SDV.EE] Life Sciences [q-bio]/Ecology, environment</subject> <type>info:eu-repo/semantics/article</type> <type>Journal articles</type> <description lang=en>To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host–pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 128C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 128C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats.</description> <rights>http://creativecommons.org/licenses/by/</rights> <date>2016-03</date> </dc> </metadata> </record> </GetRecord> </OAI-PMH>